facetable

Data source: github.com/simon/datasette-psutil · About: /-/psutil demo

15 rows

View and edit SQL

Suggested facets: created, planet_int, on_earth, state, city_id, neighborhood, tags, complex_array, created (date), tags (array)

pk ▼ created planet_int on_earth state city_id neighborhood tags complex_array distinct_some_null
1 2019-01-14 08:00:00 1 1 CA San Francisco 1 Mission ["tag1", "tag2"] [{"foo": "bar"}] one
2 2019-01-14 08:00:00 1 1 CA San Francisco 1 Dogpatch ["tag1", "tag3"] [] two
3 2019-01-14 08:00:00 1 1 CA San Francisco 1 SOMA [] []  
4 2019-01-14 08:00:00 1 1 CA San Francisco 1 Tenderloin [] []  
5 2019-01-15 08:00:00 1 1 CA San Francisco 1 Bernal Heights [] []  
6 2019-01-15 08:00:00 1 1 CA San Francisco 1 Hayes Valley [] []  
7 2019-01-15 08:00:00 1 1 CA Los Angeles 2 Hollywood [] []  
8 2019-01-15 08:00:00 1 1 CA Los Angeles 2 Downtown [] []  
9 2019-01-16 08:00:00 1 1 CA Los Angeles 2 Los Feliz [] []  
10 2019-01-16 08:00:00 1 1 CA Los Angeles 2 Koreatown [] []  
11 2019-01-16 08:00:00 1 1 MI Detroit 3 Downtown [] []  
12 2019-01-17 08:00:00 1 1 MI Detroit 3 Greektown [] []  
13 2019-01-17 08:00:00 1 1 MI Detroit 3 Corktown [] []  
14 2019-01-17 08:00:00 1 1 MI Detroit 3 Mexicantown [] []  
15 2019-01-17 08:00:00 2 0 MC Memnonia 4 Arcadia Planitia [] []  

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE facetable (
    pk integer primary key,
    created text,
    planet_int integer,
    on_earth integer,
    state text,
    city_id integer,
    neighborhood text,
    tags text,
    complex_array text,
    distinct_some_null,
    FOREIGN KEY ("city_id") REFERENCES [facet_cities](id)
);
Powered by Datasette · Query took 18.224ms · Data source: github.com/simon/datasette-psutil · About: /-/psutil demo